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Abstract
Our purpose in this paper is to study when a planar differential system
polynomial in one variable linearizes in the sense that it has an inverse
integrating factor which can be constructed by means of the solutions of linear
differential equations. We give several families of differential systems which
illustrate how the integrability of the system passes through the solutions of
a linear differential equation. At the end of the work, we describe some
families of differential systems which are Darboux integrable and whose inverse
integrating factor is constructed using the solutions of a second–order linear
differential equation defining a family of orthogonal polynomials.

PACS numbers: 02.10.−v, 02.30.Hq
Mathematics Subject Classification: 14H05, 34A05, 34A34

1. Introduction

In this work we consider planar polynomial differential systems as:

ẋ = P(x, y), ẏ = Q(x, y), (1)

where P(x, y) and Q(x, y) belong to the ring of real polynomials in one variable and are
analytic in the other variable, that is, they belong to the ring R(x)[y] if we choose y as the
variable in which they are polynomial. We will always assume that P(x, y) and Q(x, y) are
coprime polynomials with respect to y. We denote by d the maximum of the degrees of P and
Q as polynomials in y.

We define the orbital equation associated with system (1) as the ordinary differential
equation which is satisfied by the orbits of the system, that is, the orbital equation associated
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with system (1) is either

dy

dx
= Q(x, y)

P (x, y)
or

dx

dy
= P(x, y)

Q(x, y)
.

The aim of this work is to study when a system (1) linearizes.

Definition 1. We say that system (1) linearizes, or that it is linearizable, if it has an inverse
integrating factor which can be constructed by means of the solutions of linear differential
equations.

We recall that the classical definition that a system (1) is linearizable is that there exists
a change of variables which transforms the orbital equation associated to system (1) into a
linear differential equation. The techniques used to find such a change usually come from the
Lie group theory, see [3, 9] and the references therein. We do not treat this problem in this
paper but the examples that we study show that there is a connection between both definitions
of linearizability.

This paper is related to the integrability problem which is defined as the problem of finding
a first integral for a planar differential system and determining the functional class it must
belong to. We recall that a first integral H(x, y) of system (1) is a function of class C1 in some
open set U of R

2, non-locally constant and which satisfies the following partial differential
equation:

P(x, y)
∂H

∂x
(x, y) + Q(x, y)

∂H

∂y
(x, y) ≡ 0.

An inverse integrating factor of system (1) is a function V (x, y) of class C1 in some open set
U of R

2, non-locally null and which satisfies the following partial differential equation:

P(x, y)
∂V

∂x
(x, y) + Q(x, y)

∂V

∂y
(x, y) =

(
∂P

∂x
(x, y) +

∂Q

∂y
(x, y)

)
V (x, y).

The function (∂P/∂x) + (∂Q/∂y) is called the divergence of system (1) and it is denoted by
div throughout the rest of the paper. We note that the function 1/V (x, y) is an integrating
factor for system (1) in U , and that given an inverse integrating factor defined in U , a first
integral in U − {V = 0} can be constructed by means of the following line integral:

H(x, y) =
∫ (x,y)

(x0,y0)

Q(x, y) dx − P(x, y) dy

V (x, y)
,

where (x0, y0) is any chosen base point in U with V (x0, y0) �= 0. We note that this function
H(x, y) is well-defined, in general, only in a simply-connected subset of U − {V = 0}. In
nonsimply-connected subsets of U − {V = 0},H(x, y) can be a multivalued function but it
continues to exhibit the dynamic behavior of the orbits in the set.

The integrability of system (1) is given, in many occasions, by the existence of invariant
curves. We say that a C1 function f : U ⊂ R

2 → R is an invariant curve for a system (1) if it
is not locally constant and satisfies

P(x, y)
∂f

∂x
(x, y) + Q(x, y)

∂f

∂y
(x, y) = kf (x, y)f (x, y),

with kf (x, y) a polynomial in y of degree lower or equal to d − 1, where d is the degree
of the system in y, and it is of class C1 in the other variable. In the case f (x, y) is a
polynomial we say that f (x, y) = 0 is an invariant algebraic curve for system (1). The
construction of inverse integrating factors or analytic first integrals inside certain functional
classes (polynomial, rational, elementary or Liouvillian) is strongly related with the existence
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of invariant algebraic curves (see for instance work [8] and specially the references therein)
and it belongs to the context of the Darboux theory of integrability, see [6]. When considering
the integrability problem we are also addressed to study how the existence of a first integral in
a certain functional class implies the existence of an inverse integrating factor inside a certain
given class of functions. In the particular case that system (1) is polynomial, we have that the
existence of an elementary first integral implies the existence of an inverse integrating factor
which is a rational function up to a rational power. Moreover, when system (1) is polynomial,
we have that the existence of a Liouvillian first integral implies the existence of an inverse
integrating factor of Darboux type, see [6, 8] and the references therein for the proof of these
results. These results suggest that the functional class of an inverse integrating factor is usually
easier than the functional class of a first integral. This is the reason why we look for an inverse
integrating factor to study the integrability of system (1). Moreover, the inverse integrating
factor is shown to be defined in phase portraits in which the dynamics avoids the existence
of a first integral. However, there are also systems whose dynamics avoid the existence of an
inverse integrating factor, see [5].

In the work [8], systems of the form (1) whose integrability is given by the solutions
of linear differential equations are described. We obtained a result which allows to find an
explicit expression for a first integral of a certain type. By means of a rational change of
variable, we obtain the homogenous second-order linear differential equation: A2(x)w′′(x) +
A1(x)w′(x) + A0(x)w(x) = 0, whose coefficients are polynomials, corresponding to a planar
polynomial differential system. We prove that this system has an invariant curve for each
arbitrary non-null solution w(x) of the second-order ordinary differential equation, which,
in the case w(x) is a polynomial, gives rise to an invariant algebraic curve. In addition, we
give an explicit expression of a first integral for the system constructed from two independent
solutions of the second order ordinary differential equation. This first integral is not, in general,
a Liouvillian function. The inverse integrating factor of the system (1) which is associated
to the aforementioned second-order linear differential equation, takes the form V (x, y) =
q(x)(w′(x) − g(x, y)w(x))2 where q(x) = A2(x) exp

{ ∫
A1(x)

/
A2(x) dx

}
, g(x, y) is a

fixed rational function and w(x) is a non-null solution of the second-order linear differential
equation.

Moreover, in the work [8] we also consider first-order linear differential equations:
A1(x)w′(x)+A0(x)w(x) = 0 with polynomial coefficients and analogous results are obtained.
The inverse integrating factor of system (1) which is associated to this first-order linear
differential equation, takes the form V (x, y) = A1(x)g(x, y)(w(x) − a(x, y)) where a(x, y)

is a function defined in terms of A1(x) and A0(x), g(x, y) is fixed rational functions and w(x)

is a non-null solution of the first-order linear differential equation.
Hence, in the work [8], we give families of systems which, by construction, linearize,

because their corresponding inverse integrating factors are obtained in terms of the solutions
of a linear differential equation. Moreover, the given families are very general since they come
from any rational change of variables. The present work comes as a reciprocal of the work
[8], since we look for systems which can be linearized, in the sense of definition 1.

The goal of this work is to demonstrate an algorithm to detect when a system is integrable
(either inside the Liouvillian class or not) by means of a linearization process. That is, we
target to find systems whose integrability passes through the solutions of a linear differential
equation. We proceed by giving and explaining several examples which illustrate this process.

The examples that we study suggest that the integrability by linearization of a polynomial
system (1) reduces to solve linear differential equations of order 2 or it falls into the Darboux
theory of integrability.
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The studied examples also give rise to the following questions: when a system is
linearizable (in the sense of definition 1) with a linear differential equation of order 1, does a
rational change of variables always exist which transforms the system to an orbital equation
which is linear? In the same way, we can also ask whether when a system is linearizable (in
the sense of definition 1) with a linear differential equation of order 2, a rational change of
variables always exists which transforms the system to an orbital equation of Riccati type?

For the families of systems studied in [8], the answer to the previous two questions is
affirmative.

The question of linearizability has attracted many authors since the transformation of
an ordinary differential equation or a partial differential equation of any order by means of
several differential–algebraic manipulations to a linear differential equation, gives in general
the solution of the first, nonlinear problem. Moreover, ordinary differential equations which
linearize come naturally with some physical applications, see [7] and the references therein.
In the work [7], the question of which ordinary differential equations (of any order) linearize
upon differentiation is addressed and some sufficient conditions on the form of the equation
are given. However, these sufficient conditions are very restrictive over the equations and
only very special particular equations can satisfy them. We only consider ordinary differential
equations of first order, that is systems of the form (1) and we study several differential–
algebraic manipulations so as to get a linear equation which characterizes its integrability.

We use two different methods to exhibit that a system is linearizable: equivalence and
compatibility. Both methods start in the same way. We consider system (1) and think of it
as polynomial in one variable, for instance y. Then, we take a polynomial in the variable y

of a certain fixed degree and with arbitrary coefficients, which are functions of the variable
x,

∑M
i=0 hi(x)yi , and we impose it to be an inverse integrating factor of the corresponding

system (1). This condition gives rise to a system of linear differential equations on the
coefficients hi(x). In general, this system of linear differential equations is overly determined.
Several conditions on system (1) can make this system compatible and the way to choose these
conditions is what distinguishes between the both methods.

The compatibility method is the grossed one between the two: we consider the system of
linear differential equations with variables hi(x) and we uncouple the variables by means of
differentiation and resultants. We end up with an algebraic–differential condition on system
(1). Although this method gives all the possible choices for system (1) to have an inverse
integrating factor of the prescribed form, it is usually too overwhelming to be carried out.

On the other hand, we can consider the equivalence method. This method is wiser and
consists of uncoupling the system of linear differential equations with variables hi(x), avoiding
differentiation and resultants, and only uses substitution at each step. We end up with a number
of linear differential equations of certain order and of only one variable, say h0(x), and we
make these equations equivalent, that is, we impose them to be the same equation and/or to
be identically null for some of them. This method again gives certain particular conditions on
system (1) which are, usually, easy to satisfy.

We note that the conditions given by the equivalence method are also contained in the
conditions given by the compatibility method but their determination is much easier when the
equivalence is involved.

The method of equivalence gives rise to a linear ordinary differential equation of a certain
order � for one variable, which can be any hi(x) in the expression

∑M
i=0 hi(x)yi . Each solution

of this ordinary differential equation gives, by substitution(now in the reverse manner), an
inverse integrating factor for system (1). We would like to know the possible values of �,
that is, we ask whether we can linearize systems (1) by means of a linear ordinary differential
equation of any order �, with � � 0. We aim to know the values of the order � corresponding to
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a linear differential equation such that each of its solutions cannot be expressed as a polynomial
on the solutions of an equation of order lower than �. The following result shows that the
order of such a linear differential equation is at most 2.

Theorem 2. We assume that system (1) has an inverse integrating factor of the form:

V (x, y) =
M∑
i=0

hi(x)yi, (2)

where M is a nonnegative integer number and hi(x) are analytic functions in x, i =
0, 1, . . . ,M . We assume that the functions hi(x), for i = 1, 2, . . . ,M , are polynomials
in h0(x) and its derivatives, and that h0(x) satisfies a linear differential equation of order �,
with � a nonnegative integer, whose solutions cannot be algebraically expressed in terms of
the solutions of an equation of order lower than �. Then, � � 2.

Proof. We know that a linear ordinary differential equation of order � has a fundamental
set of solutions with cardinal �. That is, there are � linearly independent solutions to
the equation. Assume that � � 3 and let V1(x, y), V2(x, y) and V3(x, y) be three inverse
integrating factors each one constructed by using one of these linearly independent solutions
through the expression (2). The quotients of two of them then give first integrals of system (1):
H1(x, y) = V1(x, y)/V3(x, y) and H2(x, y) = V2(x, y)/V3(x, y). These two first integrals
need to be functionally dependent since any first integral of a planar differential system like (1)
is a function of another one. We now show that, in fact, H1 and H2 are algebraically dependent,
that is, there exists a polynomial with real coefficients P(z1, z2) such that P(H1,H2) ≡ 0.
We consider the level curves of each Hi : Vi(x, y) − ciV3(x, y) = 0, with i = 1, 2, which are
two polynomials in y because each Vi(x, y), i = 1, 2, 3, is a polynomial in y. Let us take the
resultant of the polynomials V1(x, y) − c1V3(x, y) and V2(x, y) − c2V3(x, y) with respect to
y and we denote it by R(c1, c2, x). We remark that this resultant is a polynomial in c1 and
c2 and it factorizes as R(c1, c2, x) = P(c1, c2)R0(c1, c2, x) (as we shall see) where P(c1, c2)

and R0(c1, c2, x) are polynomials in c1 and c2. This factorization of R(c1, c2, x) is deduced
by the fact that each y-root of V1(x, y) − c1V3(x, y) = 0, for a fixed c1, needs to correspond
to a value of c2 such that the whole y-root is contained in V2(x, y) − c2V3(x, y) = 0. That is,
for a fixed c1 and y-root of V1(x, y) − c1V3(x, y) = 0, there exists a value of c2 such that this
y-root is completely contained in V2(x, y)− c2V3(x, y) = 0. Therefore, we have encountered
a polynomial P(c1, c2) which relates the two first integrals in the desired way.

Let us call Si(x) the solution of the linear ordinary differential equation which gives the
inverse integrating factor Vi(x, y), i = 1, 2, 3. Since P(H1,H2) ≡ 0, we deduce that there
exists a homogeneous polynomial with real coefficients such that p(S1, S2, S3) ≡ 0. To deal
with this polynomial p, we put y = 0 in the expression of P(H1,H2) and take a common
denominator. The existence of this polynomial p implies that S3 can be expressed algebraically
in terms of S1 and S2. We remark that any two given functions S1 and S2 satisfy the linear
homogeneous ordinary differential equation of second order:

det

∣∣∣∣∣∣
w′′(x) w′(x) w(x)

S ′′
1 (x) S ′

1(x) S1(x)

S ′′
2 (x) S ′

2(x) S2(x)

∣∣∣∣∣∣ = 0.

Thus, the function S3 is algebraically expressed in terms of the solutions of an equation of
second order.

We conclude that any inverse integrating factor which shows the linearizability of system
(1) through a linear differential equation of order � with � � 3, can be expressed in such a
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way that the linearizability of the system is given through a linear differential equation of, at
most, second order. �

In order to make more precise the given notion of linearization of a system (1), we include
several examples of this phenomenon and we use the described methods of equivalence or
compatibility.

2. Examples

2.1. Automatically linearizable systems

In this section we describe examples of systems for which we find an inverse integrating factor
constructed by means of the solutions of a linear differential equation, that is, we describe
examples of linearizability. We do not need to impose any condition on the system to ensure
its linearizability, that is, the system of linear differential equations on the functions hi(x) for
which V (x, y) = ∑M

i=0 hi(x)yi is an inverse integrating factor is not overly determined.

Example 1. Let us consider systems of the form (1) with:

P(x, y) = −y, Q(x, y) =
m∑

i=0

g2i (x)y2i , (3)

where g2i (x) are analytic functions and m is an integer number with m � 0. In this section
we consider only the case in which m = 2.

We look for an inverse integrating factor V (x, y) which is a polynomial in y of the same
degree as (3) and of the form:

V (x, y) =
m∑

i=0

h2i (x)y2i ,

where h2i (x) are suitable functions which will satisfy linear differential equations. Our goal
is to impose such a function V (x, y) as an inverse integrating factor for system (3) and deduce
the relations on the functions g2i (x) to accomplish it.

The case m = 0 is easily integrable since the corresponding orbital equation has separate
variables. Let us explicit the computations made when m = 2. We have the system:

ẋ = −y, ẏ = g0(x) + g2(x)y2 + g4(x)y4, (4)

and we look for an inverse integrating factor of the form V (x, y) = h0(x)+h2(x)y2 +h4(x)y4.
We impose the following relation to be satisfied:

P
∂V

∂x
+ Q

∂V

∂y
= div · V,

where div = 2g2(x)y + 4g4(x)y3. The previous partial differential equation can be arranged
in powers of y and we get that three relations among the functions h2i (x) need to be satisfied,
corresponding to the powers y5, y3 and y. We remark that we have three relations and three
functions to satisfy them. This is an exceptional case since the number of equations and the
number of variables coincide. These relations read for:

h′
4(x) − 2g2(x)h4(x) + 2g4(x)h2(x) = 0,

h′
2(x) − 4g0(x)h4(x) + 4g4(x)h0(x) = 0,

h′
0(x) − 2g0(x)h2(x) + 2g2(x)h0(x) = 0.

(5)
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We can deduce the values of the functions h2(x) and h0(x), for instance, from the first two
equations (5). The third equation in (5) gives a third-order linear differential equation for
h4(x) which is:

g2
4h

′′′
4 − 3g4g

′
4h

′′
4 +

(−4g2
2g

2
4 + 16g0g

3
4 − 4g2

4g
′
2 + 4g2g4g

′
4 + 3g′2

4 − g4g
′′
4

)
h′

4

+ 2((4(g4g
′
0 − g0g

′
4) − 2g2g

′
2 − g′′

2 )g2
4

+ (2g2
2 + 3g′

2)g4g
′
4 − 3g2g

′2
4 + g2g4g

′′
4 )h4 = 0, (6)

where we avoid writing each as a function of x (and hereafter also when need arises) and thus
simplifying the notation.

We have obtained a third-order linear differential equation whose solutions give rise to an
inverse integrating factor for system (3) with m = 2. We note that we did not need to impose
any restriction on the functions g2i (x), i = 0, 1, 2, so as to linearize the system. System (3)
with m = 2, that is system (4), is always linearizable and we have been able to deduce this
fact using our method.

Although we have obtained a third-order linear differential equation for h4(x), we will
see that this function is related to a second-order linear ordinary differential equation,
as the statement of theorem 2 establishes. Let us impose an inverse integrating factor
for system (4) of the form V (x, y) = (h̃0(x) + h̃2(x)y2)2, where h̃0(x) and h̃2(x) are
suitable functions. Repeating the same computations as before, we get that the relation
corresponding to the power y5 in the equation of inverse integrating factor gives that
h̃0(x) = (g2(x)h̃2(x) − h̃′

2(x))/(2g4(x)) and the other two relations (corresponding to y3

and y1) are equal and give the following second order ordinary differential equation for h̃2(x):

g4h̃
′′
2 − g′

4h̃
′
2 +

(
g2g

′
4 − g′

2g4 + 4g0g
2
4 − g2

2g4
)
h̃2 = 0. (7)

The fact that the two relations, corresponding to y3 and y1, are equal is not expected and this
equality confirms that system (4) is linearizable.

Actually, straightforward computations show that if we denote by A(x) and B(x) two
independent solutions of the second order equation (7), then a fundamental set of solutions
of (6) is: A2(x), A(x)B(x) and B2(x). Hence, the third-order linear ordinary differential
equation (6) is, in fact, reducible to a second order ordinary differential equation. This is
an example of the result stated in Theorem 2. We note that, in any case, we have linearized
system (4). The reduction of order passes, in this case, through the change h4(x) = (h̃2(x))2

which transforms equation (6) in a nonlinear differential equation which is compatible
with (7).

We make it precise that when we have linearized system (3) with m = 2, that is system
(4), we have obtained a third-order linear differential equation (6), but this equation was not
necessary since an inverse integrating factor can be obtained through a second-order linear
ordinary differential equation, as theorem 2 states.

We consider the algebraic change of variables y �→ z with z = h̃0(x) + h̃2(x)y2,
where h̃i , i = 0, 2 are the functions which define the inverse integrating factor V (x, y) =
(h̃0(x) + h̃2(x)y2)2 which we have already dealt with. This change of variables applied to
system (4) gives the following orbital equation:

dz

dx
= −z(2zg4(x) + h̃′

2(x))

h̃2(x)
,

which is of Riccati type.

7
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An algebraic change applied to system (4) which gives an orbital equation of Riccati type
is not unique. We note that the algebraic change of variables y �→ u with u = y2 applied to
system (4) gives the following orbital equation:

du

dx
= −2(g0(x) + g2(x)u + g4(x)u2), (8)

which is also of Riccati type. The linearizable systems studied in the examples show the
existence of a rational change of variables which transforms the system to an orbital equation
of Riccati type, as a counterpart. We do not look for changes of variables but for linearizability.

It is well-known the equivalence between ordinary differential equations of Riccati type
and second-order linear differential equations. For instance, by the change u �→ w with
dw/dx = 2g4(x)u(x)w we have that the Riccati equation (8) is equivalent to the following
second-order linear differential equation for w(x):

g4(x)w′′(x) + (2g2(x)g4(x) − g′
4(x))w′(x) + 4g0(x)g2

4(x)w(x) = 0. (9)

This family of systems also appears as a particular case of the systems described in [8]
by means of the algebraic change of variables y �→ u with u = y2, which leads it to the
orbital equation of Riccati type (8). Following the ideas described in [8], if we consider
equation (7) and we perform the change h̃2(x) = exp

{∫ x

0 g2(s) ds
}
w(x), we obtain the linear

differential equation (9). We would like to remark that the linearizability process does not
pass through the second-order linear differential equation (9), which is equivalent to the orbital
equation (8). The linearizability of system (4) is concerned with the second-order linear
differential equation (7) whose solutions define an inverse integrating factor for the system.
However, to impose that system (4) has an inverse integrating factor constructed with the
solutions of a linear differential equation seems to imply that the orbital equation associated
to the system is equivalent to a linear differential equation by means of an algebraic change of
variables. All the examples that we present in this work confirm this implication although the
involved linear differential equations are different and come from different sources.

2.2. Linearizability by equivalence

In this section we describe several examples of systems of the form (1) which, under
certain restrictions, are linearizable. We determine these restrictions by using the equivalence
method.

Example 2. We consider system (3) with m � 3 and explain a process which encounters a
linearizable subfamily. Let us describe the computations for system (3) with m = 3. In fact,
for m = 1 and for any m � 3 the discussion is analogous. The only cases which are different
are m = 0 (separated variables) and m = 2 (second-order linear differential equation) which
have already been treated in example 1. We consider the system:

ẋ = −y, ẏ = g0(x) + g2(x)y2 + g4(x)y4 + g6(x)y6,

and we take a function of the form V (x, y) = h0(x) + h2(x)y2 + h4(x)y4 + h6(x)y6. By
imposing it to be an inverse integrating factor and equating with the same powers of y,
we get five relations which need to be satisfied and which correspond to the coefficients of
y, y3, y5, y7 and y9. From the coefficient of y9 we compute h4(x) in terms of g2i (x) and
h6(x). In the same way, from the coefficient of y7 we compute h2(x) and from the coefficient
of y5, we compute h0(x) in terms of g2i (x) and h6(x). We are left with two linear differential
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equations of second order for h6(x) which read for:

h′′
6

4g6
+

(
g2

4

3g2
6

− g2

g6
− g′

6

4g2
6

)
h′

6 +

[
1

3g6

(
g2

4

g6

)′
− g2

4g
′
6

3g3
6

−
(

g2

g6

)′]
h6 = 0,

g4h
′′
6

12g6
+

(
1

3

(
g4

g6

)′
− g′

4

12g6
+

g2g4

6g6
− 3g0

2

)
h′

6

+

(
g4g

′2
6

2g3
6

− g′
4g

′
6

2g2
6

+
g2

3

(
g4

g6

)′
+

g0g
′
6

g6
− g′

0

)
h6 = 0.

We apply the equivalence method to these two linear differential equations, that is, we impose
the values of g2i (x) to make them the same equation. Astonishingly, we only need to impose
the condition:

g0(x) = g2(x)g4(x)

3g6(x)
− 2

27

g4(x)3

g6(x)2
+

1

6

(
g4(x)

g6(x)

)′
,

so as to get only one second-order linear differential equation for h6(x):

3g6h
′′
6 +

(
4g2

4 − 12g2g6 − 3g′
6

)
h′

6 +

(
8g4g

′
4 − 8g2

4g
′
6

g6
+ 12g2g

′
6 − 12g6g

′
2

)
h6 = 0. (10)

Hence, we have a family of systems of the form (3) which linearize. At this point we have met
our target since we have encountered a family of systems whose integrability passes through
the solution of a second-order linear differential equation.

We now describe another unexpected phenomenon which occurs in this family. The
second-order linear equation for h6 can be reduced to a linear equation of order 1. We remark
that Theorem 2 does not apply because equation (10) is of order 2. We consider system (3)
with m = 3 and the described value of the function g0(x). We impose a function of the form
V (x, y) = (h̃0(x)+ h̃2(x)y2)3 to be an inverse integrating factor. We get that h̃0 = g4h̃2/(3g6)

and obtain only one linear homogeneous differential equation of order 1 for the function h̃2(x)

which is 9g6h̃
′
2 + 4

(
g2

4 − 3g2g6
)
h̃2 = 0. Therefore, we have that system (3) with m = 3 and

the described value of g0(x) linearizes. We remark that the final equation for h̃2(x) in the case
m = 3 is of order 1 whereas the final equation for h̃2(x) in the case m = 2 is of order 2.

Moreover, this family of systems also appears as a particular case of the work [8].
We consider the algebraic change of variables y �→ z with z = h̃0(x) + h̃2(x)y2, where
h̃i , i = 0, 2 are the functions which define the encountered inverse integrating factor
V (x, y) = (h̃0(x) + h̃2(x)y2)3. This change of variables applied to the considered family
of systems gives the following orbital equation:

dz

dx
= 2

9
z

(
−3g2(x) +

g4(x)2

g6(x)
− 9g6(x)z2

h̃2(x)2

)
, (11)

which is a differential equation of Bernoulli type. The change z �→ u with z = 1/
√

u

transforms equation (11) to a linear differential equation. We note that by this method we
impose a system to be linearized, that is, the other way round of what we obtained in [8],
where we started by the linear differential equation and deduced the corresponding system. As
far as the examples described in this work indicate, we have observed that when a linearizable
system (1) (in the sense of definition 1) admits an inverse integrating factor of the form
V (x, y) = c(x, y)n, where n is a positive integer and c(x, y) is a polynomial in y, the
algebraic change y �→ z, where z = c(x, y), applied to the system gives an orbital equation
which is of Riccati or Bernoulli type.

The same computations can also be done for the systems (3) with m = 1 or m > 3,
and giving certain values to m − 2 of the functions g2i (x), that is we have three arbitrary

9
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functions g2i (x) in the expression of Q(x, y), an inverse integrating factor of the form
V (x, y) = (h̃0(x) + h̃2(x)y2)m is exhibited, where h̃0(x) is expressed in terms of the g2i (x)

and h̃2(x), and the function h̃2(x) is the solution of a linear homogeneous ordinary differential
equation of order 1. In the particular case where the linearizable system (3) with m � 3 is a
polynomial differential system, we have that the encountered inverse integrating factor is of
Darboux type. We remark that in the method of linearization we are not seeking for invariant
algebraic curves but we have obtained them by construction.

When we have studied systems of the form (3) with m = 2 we have exhibited a system
in which the linearization is automatically met. When we have described the systems of
the form (3) with m = 3, we have given a family of linearizable systems in which the
linearization is met by the equivalence method. We also remark that in case system (3) is
polynomial, we can encounter non-Liouvillian inverse integrating factors when m = 2, that
is, when the system is of degree 4 in variable y. When m � 3 in a polynomial system (3), the
linearization process gives a Darboux inverse integrating factor and, thus, a Liouvillian first
integral. This fact implies that the encountered second-order linear differential equation (10)
only has elementary solutions.

Example 3. The following family of systems is a more general case and we use equivalence
method so as to deal with this subfamily of linearizable systems. Let us consider the system:

ẋ = c0(x) + c2(x)y2,

ẏ = d0(x) + d1(x)y + d2(x)y2 + d3(x)y3 + d4(x)y4 + d5(x)y5 + d6(x)y6,
(12)

where ci(x) and di(x) are analytic functions with c2(x) · d6(x) �≡ 0. We start by imposing an
inverse integrating factor of the form

V (x, y) =
6∑

i=0

hi(x)yi,

which is a polynomial in y of the same degree as system (12). We substitute this expression of
V in the partial differential equation that must be satisfied to be an inverse integrating factor
and we obtain that a certain polynomial in y of degree 10 must be identically zero. From the
coefficients in y of this equation of degrees from 10 to 5 we deduce the values of hi(x) with
i = 0, 1, . . . , 5. The rest of the coefficients give five linear differential equations for h6(x).
Two of them are of order 3 and the rest of the order 2. We impose the three equations of order
2 to be identically null, which give the following conditions on system (12):

d5(x) = 0, d4(x) = 6c0(x)d6(x)

c2(x)
, d2(x) = 9c0(x)2d6(x)

c2(x)2
,

d1(x) = 3c0(x)d3(x)

c2(x)
− c2(x)

(
c0(x)

c2(x)

)′
.

(13)

Under these conditions we get that the three equations of order 2 are identically null and,
surprisingly, the two equations of third order are equal. The fact that under this small number
of restrictions, the involved linear differential equations become equivalent is unexpected and
confirms the hidden structure of the linearizability process. This subfamily of systems (12) is
linearizable.

We remark that this is not the only way to proceed so as to get linearizability. We
could also have imposed the two equations of third order to be identically null and then use
equivalence with the second order equations. We have only presented one of the possible
cases that we dealt with.

10
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We know that the considered third-order linear differential equation can be reduced
because its solutions cannot be functionally independent. Let us consider an inverse integrating
factor for system (12) of the form V (x, y) = (h̃3(x)y3+h̃2(x)y2+h̃1(x)y+h̃0(x))2. Analogous
computations give that, under the same conditions, the determination of V (x, y) comes from
the solution of the following second-order linear differential equation in h̃3(x):

2c2
2

3d6
h̃′′

3 − 2c2
2d

′
6

3d2
6

h̃′
3 +

(
c′2

2

6d6
− c2c

′′
2

3d6
+

c2c
′
2d

′
6

3d2
6

+ c2

(
d3

d6

)′
− 3d2

3

2d6
+ 6d0

)
h̃3 = 0.

We note that the change of variables y �→ u with

c2(x)2u + 3d6(x)y(3c0(x) + c2(x)y2) = 0

transforms the orbital equation associated to system (12), with the values imposed in (13), to
a Riccati equation. We have that system (12), with the values described in (13), is a particular
case of the results given in [8]. As before, when we apply the linearization process we do not
look for systems which come from Riccati equations via a change of variables, but we obtain
such systems as a counterpart.

2.3. Linearizability by compatibility

In this section we describe several examples of systems of the form (1) which, under certain
restrictions, are linearizable, in the sense of definition 1. We deal with these restrictions by
applying the compatibility method.

Example 4. Let us consider the following system which appears in the work [4]. The system

ẋ = y(−1 + 2ρ2(x2 − y2)), ẏ = x + ρx2 + ρy2 + 4ρ2xy2, (14)

where ρ ∈ R, has the inverse integrating factor V (x, y) = (x2 + y2)2(1 + 2ρx + ρ2(x2 + y2)).
We next deal with this inverse integrating factor using the compatibility method. This is the
first example in which the compatibility method appears.

We consider system (14) and we impose an inverse integrating factor of the form
V (x, y) = h0(x) + h2(x)y2 + h4(x)y4 + h6(x)y6. We equate to zero the coefficients of
the powers of y in the relation that makes V (x, y) an inverse integrating factor. We have five
equations corresponding to the coefficients of yj for j = 1, 3, 5, 7, 9 which read for:

2x(1 + ρx)h2(x) = (1 − 2ρ2x2)h′
0(x) + 2ρ(1 + 6ρx)h0(x),

4x(1 + ρx)h4(x) − 2ρ2h′
0(x) = (1 − 2ρ2x2)h′

2(x) + 4ρ2xh2(x),

6x(1 + ρx)h6(x) − 2ρ2h′
2(x) = (1 − 2ρ2x2)h′

4(x) − 2ρ(1 + 2ρx)h4(x),

2ρ2h′
4(x) = −(1 − 2ρ2x2)h′

6(x) + 4ρ(1 + 3ρx)h6(x),

2ρ2h′
6(x) = 0.

We remark that we have five linear differential equations for the four functions
h0(x), h2(x), h4(x) and h6(x). This system of linear differential equations is shown to be
overly determined. In the following We proceed in several ways but with no loss of generality
in any of them. We can, for instance, take the equations from the last one to the first one
in the order they have been written. We solve them, leaving an arbitrary constant at each
step. We end up with several algebraic relations for these constants which mark their value
and from which we get the inverse integrating factor for the previously described polynomial.
The compatibility of these relations is obtained by an adequate choice of the constants of
integration. Another way to study this system of linear differential equations is to take them
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in the order they have been written. From the first one we equate h2(x) and we substitute it
in the rest of equations. From the second equation, we equate h4(x) and we again substitute
it in the rest of equations and from the third equation we get h6(x). We end up with two
linear differential equations of fourth order for h0(x) and we make them compatible. The
compatibility process goes as follows: we consider the two linear differential equations of
fourth order for h0(x) and we make a linear combination of them so as to get a linear differential
equation of third order. We derive this third-order linear differential equation and we combine
it with one of the previously considered linear differential equations of fourth order for h0(x).
We have two third-order linear differential equations for h0(x) and we combine them so as to
get a linear differential equation of second order:

x(1 + ρx)(1 − 7ρ2x2 − 6ρ3x3 + 13ρ4x4 + 24ρ5x5 + 12ρ6x6)h′′
0(x) − (3 + 4ρx − 27ρ2x2

− 62ρ3x3 + 33ρ4x4 + 224ρ5x5 + 252ρ6x6 + 96ρ7x7)h′
0(x) + 2ρ(−3 − 12ρx

− 17ρ2x2 + 44ρ3x3 + 189ρ4x4 + 240ρ5x5 + 108ρ6x6)h0(x) = 0.

We derive it and combine with one of the previously considered equations of third order, so
as to get another linear differential equation of second order:

x(1 + ρx)(−1 − 4ρx + 30ρ2x2 + 116ρ3x3 − 176ρ4x4 − 1096ρ5x5 − 379ρ6x6 + 3914ρ7x7

+ 5454ρ8x8 − 2908ρ9x9 − 11756ρ10x10 − 7480ρ11x11 + 2832ρ12x12

+ 5184ρ13x13 + 1728ρ14x14)h′′
0(x) − (−3 − 16ρx + 80ρ2x2 + 524ρ3x3

− 108ρ4x4 − 5104ρ5x5 − 7279ρ6x6 + 15162ρ7x7 + 49126ρ8x8 + 21124ρ9x9

− 79964ρ10x10 − 125496ρ11x11 − 43376ρ12x12 + 48576ρ13x13

+ 50112ρ14x14 + 13824ρ15x15)h′
0(x) + 2ρ(3 + 24ρx + 28ρ2x2 − 386ρ3x3

− 1790ρ4x4 − 1246ρ5x5 + 10269ρ6x6 + 28150ρ7x7 + 11134ρ8x8

− 60804ρ9x9 − 106460ρ10x10 − 47832ρ11x11 + 39312ρ12x12 + 50112ρ13x13

+ 15552ρ14x14)h0(x) = 0.

We have at this step two linear differential equations of second order for h0(x), which we
combine so as to get a first-order linear differential equation for h0(x):

x(1 + ρx)h′
0(x) = 2(2 + 3ρx)h0(x).

We derive it and we obtain a second-order linear differential equation for h0(x) which,
combined with one of the previous gives rise to a first-order linear differential equation. The
two first-order linear differential equations for h0(x) turn out to be the same. If this was
not the case, we would combine them and we would obtain a compatibility condition on the
coefficients of the system. In our case, we solve this first-order linear differential equation for
h0(x). This value of h0(x) is the value which makes compatible the two fourth-order linear
differential equations from which we started the process. The only possible common solution
of these two fourth-order linear differential equations is h0(x) = x4(1 + ρx)2 (modulus a
multiplicative constant). We observe that this h0(x) univocally determines the previously
described inverse integrating factor.

This example suggests that the integrability by linearization of a polynomial system (1)
reduces to solve linear differential equations of order 2 or it falls into the Darboux theory of
integrability. We remark that any Darboux inverse integrating factor which is a polynomial in
the variable y is encountered by our linearization process: either by the equivalence method
or by the compatibility method.

We note that when applying the linearization process to system (14) we obtain a Darboux
inverse integrating factor and, thus, invariant algebraic curves of the systems as a counterpart.
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Example 5. In this example we address the question whether the family (14) can be embedded
in a linearizable family and it can be seen as a particular case of linearization with equivalence.
We can think of system (14) as a particular case of the following family of systems:

ẋ = y(g1(x) + g2(x)y2), ẏ = g3(x) + g4(x)y2, (15)

where gi(x) are arbitrary functions. In the case g2(x) ≡ 0, we have that system (15) coincides
with system (3) with m = 2 after a time-rescaling, which has already been studied in the first
example. Therefore, we can assume, without loss of generality, that g2(x) ≡ 1. We note that
the family (15) is reversible by the change (x, y, t) �→ (x,−y,−t) and, thus, any ansatz of
an inverse integrating factor must be even in y. Let us consider an inverse integrating factor
of the form:

V (x, y) = h0(x) + h2(x)y2 + h4(x)y4 + h6(x)y6.

Assuming this to be an inverse integrating factor gives a polynomial in y. We observe that
this relation is an odd polynomial in y of degree 9 which is odd. The functions hi(x) must
vanish each one of the coefficients of this polynomial in y. From the coefficient of y9 of
this polynomial we deduce that h6(x) = k6, with k6 a constant value which we assume to be
nonzero. From the coefficient of y, we deduce the value of h2(x), and from the coefficient
of y3, the value of h4(x). The coefficients of y5 and y7 give rise to two linear differential
equations of order 3 for h0(x).

When applying equivalence to these two equations, that is, imposing them to be the same
equation, we deduce the following conditions:

g3(x) = 1

4

(
2g1(x)g4(x) − g1(x)g′

1(x)
)
, g4(x) = −g′

1(x)

2
.

In this case, the orbital equation associated to system (15) is of separated variables. We observe
that the linearization process for this example leads to an ordinary differential equation with
separated variables.

Another way to study the possible linearizability of system (15) is to impose that the
two linear equations of third order have a nonzero common solution, that is, to impose
compatibility. The computations for the compatibility method for these two equations of third
order carries long calculations and many complex cases. If we apply compatibility to the two
linear differential equations of order 3 for h0(x), we obtain several conditions. The conditions
obtained in the equivalence case are reencountered now. Moreover, we obtain two additional,
and very complicated, conditions on the functions gi(x) to have compatibility. One of these
two conditions is the one satisfied by system (14) as a particular case. We have seen that
system (14) cannot be seen as a particular case of a linearizable family of systems (15) by the
equivalence method.

Example 6. We consider a planar differential system of the form:

ẋ = g0(x) + g1(x)y + g2(x)y2, ẏ = g3(x)y + g4(x)y2, (16)

where gi(x), i = 0, 1, 2, 3, 4, are arbitrary functions. We remark that this system has y = 0
as an invariant algebraic curve and we propose an inverse integrating factor which contains
this information. We now give conditions on the functions gi(x), i = 0, 1, 2, 3, 4, such that
the system has an inverse integrating factor of the form:

V (x, y) = h1(x)y + h2(x)y2 + h3(x)y3,

where hi(x), i = 1, 2, 3 are suitable functions. The imposition for V to be an inverse
integrating factor of system (16) gives rise to a polynomial in y of degree 5. From the
coefficients of y5 and y1 of this polynomial we deduce that:

h3(x) = k2g2(x), h1(x) = k0g0(x),
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where k0 and k2 are arbitrary constants. We end up with only three conditions which involve
the functions gi(x), i = 0, 1, 2, 3, 4 and the constants k0, k2. Since the function h2(x) is not
concerned, we take h2(x) ≡ 0 for simplicity. The vanishing of these three conditions gives
the following planar differential system:

ẋ = k2g1(x)(g0(x)2 + g0(x)g1(x)y + g1(x)2y2),

ẏ = y(k0g0(x) − k2g0(x) − k2yg1(x))(g′
0(x)g1(x) − g0(x)g′

1(x)),
(17)

where k0, k2 are real constants, and g0(x) and g1(x) are analytic functions. This system has the
inverse integrating factor V (x, y) = yg1(x)(k0g0(x)2 + k2g1(x)2y2). The following rational
change of variables x �→ z with z = 1 − k2 + yg1(x)/g0(x) transforms the orbital equation
associated to the system to the following linear differential equation:

dy

dz
= yz

(1 − k2 − z)(k2 + k1(1 − k2 − z)2)
.

2.4. Inverse integrating factors of only one variable

Example 7. In the following example we describe another method of linearization, which
consists of imposing conditions to the system so as to obtain an inverse integrating factor
depending only on y.

Let us consider the following system:

ẋ = y + c1(x) + c2(x)y2, ẏ = c3(x) + c4(x)y + c5(x)y2, (18)

where ci(x), i = 1, 2, 3, 4, 5 are arbitrary functions. Let us impose a function V = V0(y)

to be an inverse integrating factor and we look for conditions on ci(x), i = 1, 2, 3, 4, 5, to
accomplish this fact. The condition for V0(y) to be an inverse integrating factor for (18) reads
for:

(c3(x) + c4(x)y + c5(x)y2)V ′
0(y) = (c′

1(x) + c4(x) + 2c5(x)y + c′
2(x)y2)V0(y).

Imposing that cj (x) = kj c
′
1(x) for j = 3, 4, 5 and c2(x) = k1 + k2c1(x) with ki, i =

1, 2, 3, 4, 5, arbitrary constants, we get a linear differential equation for V0(y). We change
c1(x) to c(x) for simplicity of notations and we have that the system:

ẋ = c(x) + y + (k1 + k2c(x))y2, ẏ = c′(x)(k3 + k4y + k5y
2), (19)

linearizes since it has an inverse integrating factor V = V0(y) which needs to satisfy the linear
differential equation: (k3 + k4y + k5y

2)V ′
0(y) = (1 + k4 + 2k5y + k2y

2)V0(y). We note that
the function V0(y) is the exponential of the primitive of a rational function, that is, it is of
Darboux type.

We are going to present a change of variables for system (19) which transforms the
corresponding orbital equation to a linear differential equation. The following rational change
of variables x �→ z with z = c(x) + y + (k1 + k2c(x))y2 transforms the orbital equation
associated to system (19) into:

dz

dy
= 1 + 2k1y − k2y

2

1 + k2y2
+

1 + 2k2k3y + 2k2y
2(1 + k4 + k5y) + k2

2y
4

(1 + k2y2)(k3 + k4y + k5y2)
z,

which is linear. Thus, we get that system (19) is a particular case of the families described in [8].
It is evident that linearizable systems of the form (19) of any degree in y can be constructed

in an analogous way. The rational change of variables which would transform it to an ordinary
differential equation of linear type, and thus relate it to the work [8], is x �→ z with z = P(x, y),
where P(x, y) is the function defined by ẋ = P(x, y).
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This example suggests the following question: does an algebraic change of variables
always exists that transforms a linearizable system with a Darboux inverse integrating factor
of only one variable to a system whose orbital equation is linear?

2.5. Inverse integrating factors of the form V (x, y) = r(x)h(y)

Example 8. The following examples of linearizable systems are obtained imposing that the
inverse integrating factor is a product of two functions: one in the variable x and the other in
the variable y.

Let us consider the system

ẋ = g1(x)f1(y) + g2(x)f2(y), ẏ = g3(x)f3(y) + g4(x)f4(y), (20)

where gi(x) and fi(y) are arbitrary functions, i = 1, 2, 3, 4. We impose this system to have an
inverse integrating factor of the form V (x, y) = r(x)h(y). When we substitute this expression
in the partial differential equation which defines an inverse integrating factor, we get:(

f3(y) + f4(y)
g4(x)

g3(x)

)
h′(y) +

[
f ′

4(y)
g4(x)

g3(x)
+ f2(y)

(
g2(x)r ′(x) − g′

2(x)r(x)

r(x)g3(x)

)

+ f1(y)

(
g1(x)r ′(x) − g′

1(x)r(x)

r(x)g3(x)

)]
h(y) = 0.

We take

g3(x) = −g1(x)

k0

(
g2(x)

g1(x)

)′
, g4(x) = −g1(x)

k0k1

(
g2(x)

g1(x)

)′
, r(x) = k2g1(x),

where ki, i = 0, 1, 2 are real constants, and the previous relation reads for:(
f3(y) +

f4(y)

k1

)
h′(y) +

(
k0f2(y) − f ′

3(y) − f ′
4(y)

k1

)
h(y) = 0,

which is a linear ordinary differential equation for h(y). We obtain the following system:

ẋ = k0g1(x)(g1(x)f1(y) + g2(x)f2(y)),

ẏ = (k1f3(y) + f4(y))(g′
1(x)g2(x) − g1(x)g′

2(x))/k1,
(21)

where k0, k1 are real numbers and g1(x), g2(x) and fi(y), i = 1, 2, 3, 4, are arbitrary functions.
This system has the inverse integrating factor V (x, y) = g1(x)2h(x), where h(x) satisfies the
aforementioned linear differential equation of order 1.

The following change of variables x �→ z with z = g2(x)/g1(x) transforms the orbital
equation associated to system (21) into the following linear differential equation:

dz

dy
= −k0

f1(y) + zf2(y)

k1f3(y) + f4(y)
.

As for the previous example we address the question of the existence of an algebraic change
of variables that transforms a linearizable system with a Darboux inverse integrating factor of
the form V (x, y) = r(x)h(y) to a system whose orbital equation is linear.

3. More general inverse integrating factors

In the first sections of this work we have provided several examples to exhibit that certain
families of systems (1), which are polynomial in the variable y, have an inverse integrating
factor which is a polynomial in y. In this section we treat other expressions of an inverse
integrating factor which contain the polynomials in y as a subclass. This generalization is
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done in two steps. We first introduce a real parameter α which allows us to study polynomial
inverse integrating factors which are a polynomial in y up to a real power. This real parameter
does not involve any change in the linearization process described so forth. The second step
is to consider inverse integrating factors which are a power series in y and we end up with a
numerable set of linear differential–difference equations.

We remark that the linearization process can also be carried out by imposing a function
Vα(x, y) of class C1 in some open setU of R

2, non-locally null and which satisfies the following
partial differential equation:

P
∂Vα

∂x
+ Q

∂Vα

∂y
= α

(
∂P

∂x
+

∂Q

∂y

)
Vα, (22)

where α is a real number. In the case α = 1 we recover the method of linearization described in
the previous sections and this real free parameter α gives a generalization for the linearization
process which can lead to wider families of linearizable systems. The knowledge of a
function Vα(x, y) satisfying this partial differential equations gives that V = V

1/α
α is an

inverse integrating factor of system (1). In the following, we do not impose a system to
have an inverse integrating factor but to have a function Vα(x, y) which satisfies the partial
differential equation (22) where α is a real parameter.

In order to illustrate this linearization process we describe an example, where the
expression of the function Vα(x, y) is not a polynomial in y but a power series in y, that
is,

Vα(x, y) =
∞∑

n=0

vn(x)yn.

Let us consider a quadratic polynomial-differential system:

ẋ = a00 + a10x + a01y + a20x
2 + a11xy + a02y

2,

ẏ = b00 + b10x + b01y + b20x
2 + b11xy + b02y

2,
(23)

where aij and bij are real numbers. We impose that Vα(x, y) = ∑
n�0 vn(x)yn, satisfies the

corresponding partial differential equation (22). We fix a natural number n, and equate the
coefficients of yn in the development of (22) and we get the following linear differential–
difference equation for vn(x). As in the rest of the work, v′

n(x) means the derivative of vn(x)

with respect to x.

(a00 + a10x + a20x
2)v′

n(x) + (a01 + a11x)v′
n−1(x) + a02v

′
n−2(x)

+ (n + 1)(b00 + b10x + b20x
2)vn+1(x) + [(n − α)(b01 + b11x)

−α(a10 + 2a20x)]vn(x) + ((n − 2α − 1)b02 − αa11)vn−1(x) = 0. (24)

We include several examples of planar systems whose integrability can be determined
with a function Vα(x, y) which is a power series in y.

Example 9. We are going to take vn(x) in recurrence (24), of the form vn(x) = q(x)pn(x)

where q(x) is a suitable function in x (usually of Darboux type) and pn(x) is a polynomial
in x. In particular, in this example we impose a function of the form vn(x) = q(x)ϕnHn(x)

to be a solution of equation (24), where q(x) is a suitable function, ϕn is a suitable sequence
of real numbers and Hn(x) is the Hermite orthogonal polynomial of degree n. For further
information about orthogonal polynomials and the identities they satisfy, see for instance [1].
The Hermite orthogonal polynomials satisfy the following two identities:

Hn+1(x) = 2xHn(x) − 2nHn−1(x), H ′
n(x) = 2nHn−1(x). (25)
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We substitute the expression vn(x) = q(x)ϕnHn(x) in (24) and we use the previous identities
to simplify it. We have that the following relation must be fulfilled:

a02q(x)ϕn−2H
′
n−2(x) + A1(n, x)Hn−1(x) + A2(n, x)Hn−2(x) = 0,

where the Ai(n, x) are expressions involving the sequence ϕn, the function q(x) and the
parameters aij , bij and α. Since we have already used all the identities of the Hermite
polynomials, we need that the coefficients of H ′

n−2(x),Hn−1(x) and Hn−2(x) independently
vanish. We impose that a02 = 0 and the following values make that Ai(n, x) = 0 for i = 1, 2:

ϕn = 1

n!

(
−a11

a20

)n−1

, a00 = 0, a10 = a01a20

a11
,

b01 = −a01a20

a11
, b11 = −a20, b02 = 0, α = −1,

q(x) = exp

{
2(a11b10 − a01b20)x + a11b20x

2

a2
20

}
(a01 + a11x)µ ,

with µ = 2 a2
01b20

a11a
2
20

+ 2 (a11b00−a01b10)

a2
20

− 1.

We rename the free parameters by a01 = a0a11, a20 = −a2a11, b00 = b0a11, b10 =
b1a11, b20 = b2a11 and a11 is taken to be a11 = 1. We obtain that the quadratic system:

ẋ = (a0 + x)(y − a2x), ẏ = b0 + b1x + b2x
2 + a2(a0 + x)y, (26)

has the following expression Vα(x, y) which satisfies the partial differential equation (22) with
α = −1:

Vα(x, y) = q(x)
∑
n�0

ϕnHn(x)yn = q(x)a2

∑
n�0

1

n!
Hn(x)

(
y

a2

)n

.

The Hermite polynomials have the following generating function:

exp{2xy − y2} =
∑
n�0

1

n!
Hn(x)yn,

which also appears in the book [1]. This identity allows us to identify the power series given
by Vα(x, y) and we obtain the following inverse integrating factor V = V −1

α for system (26)

Vα(x, y) = exp

{
y2 − 2a2xy − b2x

2 + 2(a0b2 − b1)x

a2
2

}
(a0 + x)

−a2
2−2b0+2a0b1−2a2

0b2

a2
2 ,

which is of Darboux type and not a polynomial in any of the variables x or y.
In this example, we have solved recurrence (24) by imposing it to be compatible with

the identities (25). Using the solution of the recurrence, we have encountered the inverse
integrating factor of system (26) and we have, therefore, integrated the system.

Example 10. The system ẋ = 1 − x2, ẏ = y(x − y), has an inverse integrating factor of the
form V = V

1/α
α with α = −1/2 and where:

Vα(x, y) = 1

(1 − x2)1/4

1 − xy

1 − 2xy + y2
.

This function Vα(x, y) has been determined using that it satisfies;

Vα(x, y) = q(x)

∞∑
n=0

Tn(x)yn,
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where q(x) = (1 − x2)−1/4 and Tn(x) is the Chebyshev polynomial of first kind and of degree
n. This choice makes the recurrence equation (24) to be satisfied in this case. As stated in the
book [1], the Chebyshev polynomials of first kind satisfy the following identities:

Tn+1(x) = 2xTn(x) − Tn−1(x), T ′
n(x) = 2nTn−1(x) +

n

n − 2
T ′

n−2(x),

1 − xy

1 − 2xy + y2
=

∞∑
n=0

Tn(x)yn.

Example 11. The system ẋ = 1 − x2, ẏ = 1 − xy, has an inverse integrating factor of the
form:

V (x, y) = (1 − x2)2√
1 − 2xy + y2

,

which has been determined using that it satisfies;

V (x, y) = q(x)

∞∑
n=0

Pn(x)yn,

where q(x) = (1 − x2)2 and Pn(x) is the Legendre polynomial of degree n. As stated in the
book [1], the Legendre polynomials satisfy the following identities:

(n + 1)Pn+1(x) = (2n + 1)xPn(x) − nPn−1(x),

P ′
n(x) = n

x2 − 1
(xPn(x) − Pn−1(x)),

1√
1 − 2xy + y2

=
∞∑

n=0

Pn(x)yn.

Example 12. The system

ẋ = 1 + (2a2 − 7)y2 + 6y4 − 2axy(1 + y2) + 2x2y2,

ẏ = 2y2(1 − y2)(a − xy),
(27)

where a is a real parameter, has an inverse integrating factor of the form:

V (x, y) = 1√
1 − y2

exp

{
2axy − (a2 + x2)y2

1 − y2

}
.

This function V (x, y) has been determined using that it satisfies;

V (x, y) =
∞∑

n=0

Hn(a)Hn(x)

n!2n
yn,

where Hn(x) is the Hermite polynomial of degree n. The identity

1√
1 − y2

exp

{
2axy − (a2 + x2)y2

1 − y2

}
=

∞∑
n=0

Hn(a)Hn(x)

n!2n
yn,

is called Mehler’s—Hermite polynomial formula, see for instance [2].

These examples suggest that there is a connection between some Darboux inverse
integrating factors and orthogonal polynomials.
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